ANSWERS!

DIRECTIONS: For #1, find the distance between the given points and the midpoint of the segment defined by the points.

1. (2,-3),(8,-5) Distance $2\sqrt{10}$

Midpoint (5, -4)

DIRECTIONS: For #2, find the **coordinates of Z** given that M is the midpoint of \overline{YZ} .

2. Y(5,1), M(-2,4)

Z(-9,7)

DIRECTIONS: For #3, write an **equation** of the circle (in standard form) with the given center and radius.

3. (3, -7); radius = 5

$$(x-3)^2 + (y+7)^2 = 25$$

DIRECTIONS: For #4, write the following equation in the standard form of a circle, then identify the center and the radius.

4. $x^2 + y^2 + 6x - 8y - 39 = 0$

Equation $(x + 3)^2 + (y - 4)^2 = 64$

Center (-3,4) Radius 8

DIRECTIONS: For #5-6, respond in the provided blanks.

5. A parabola has its vertex at (-4, 2) and directrix of y = 5. Identify the **focus** of this parabola.

(-4, -1)

6. A parabola has its vertex at (5, -1) and focus at (9, -1). Identify the **directrix** of this parabola.

x = 1

DIRECTIONS: For #7, rewrite the equations in the standard form for parabolas. Then identify the vertex, focus, directrix, and axis of symmetry for the parabola.

7.
$$y^2 + 12x - 10y + 37 = 0$$

Equation
$$x + 1 = -\frac{1}{12}(y - 5)^2$$

Vertex
$$(-1,5)$$
 Focus $(-4,5)$

Focus
$$(-4,5)$$

Directrix
$$x = 2$$
 Axis $y = 5$

$$v = 5$$

DIRECTIONS: For #8, write an equation for an ellipse with the given intercepts.

8. *x*-intercepts:
$$\pm 8$$
; y-intercepts: ± 7

$$\frac{x^2}{64} + \frac{y^2}{49} = \mathbf{1}$$

DIRECTIONS: For #9, write an equation for an ellipse with the given foci and sum of focal radii.

9. Foci:
$$(2,1),(2,7)$$
; sum of focal radii = 8

$$\frac{(x-2)^2}{7} + \frac{(y-4)^2}{16} = 1$$

DIRECTIONS: For #10, rewrite the equation in the standard form for ellipses. Then identify the center, direction of the major axis, verticies, co-verticies, and foci.

10.
$$4x^2 + 25y^2 + 16x - 150y + 141 = 0$$
 Equation $\frac{(x+2)^2}{25} + \frac{(y-3)^2}{4} = 1$

Equation
$$\frac{(x+2)^2}{25} + \frac{(y-3)^2}{4} = 1$$

Center (-2,3) Major axis Horizontal (y=3)

Verticies
$$(-7,3) & (3,3)$$

Co-verticies
$$(-2,5)$$
 & $(-2,1)$

Foci
$$(-2 + \sqrt{21}, 3)$$
 & $(-2 - \sqrt{21}, 3)$

DIRECTIONS: For #11-12, use the given information to write an equation for a hyperbola.

11. Foci:
$$(6,0), (-6,0)$$
; difference of focal radii = 10 $\frac{x^2}{25} - \frac{y^2}{11} = 1$

12. Foci:
$$(1,1), (1,7)$$
; slope of asymptotes $= \pm \frac{\sqrt{5}}{2}$ $\frac{(y-4)^2}{5} - \frac{(x-1)^2}{4} = 1$

<u>DIRECTIONS</u>: For #13, **rewrite the equation** in the standard form for hyperbolas. Then identify the **center**, direction of the **transverse axis**, **verticies**, **foci**, and the **slopes of the asymptotes**.

13.
$$x^2 - 4y^2 + 10x + 32y - 55 = 0$$
 Equation $\frac{(x+5)^2}{16} - \frac{(y-4)^2}{4} = 1$

Center (-5, 4) Transverse axis Horizontal

Verticies
$$(-9,4) & (-1,4)$$

Foci
$$(-5 + 2\sqrt{5}, 4)$$
 & $(-5 - 2\sqrt{5}, 4)$

Slopes of asymptotes
$$\pm \frac{1}{2}$$

<u>DIRECTIONS</u>: For #14-17, **identify the conic section** (circle, ellipse, parabola, hyperbola) from its equation.

14.
$$2x^2 + 2y^2 - 20x + 4y - 34 = 0$$
 16. $2x^2 - 3y^2 - 12x - 18y - 15 = 0$

circle hyperbola

15.
$$2x^2 - 4x - y - 5 = 0$$
 17. $4x^2 + 5y^2 + 16x - 60y + 176 = 0$

parabola ellipse

EQUATION SHEET (a list of equations, with no explanations or labels) – you will also get graph paper to use during the test

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

$$(x - h)^2 + (y - k)^2 = r^2$$

$$y - k = a(x - h)^2$$

$$x - h = a(y - k)^2$$

$$a = \frac{1}{4c}$$

$$\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1$$

$$\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1$$

$$c^2 = a^2 - b^2$$

$$c^2 = a^2 + b^2$$

$$\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1$$

$$\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1$$